End-to-End Optimized Speech Coding with Deep Neural Networks
نویسنده
چکیده
Modern compression algorithms are often the result of laborious domain-specific research; industry standards such as MP3, JPEG, and AMR-WB took years to develop and were largely hand-designed. We present a deep neural network model which optimizes all the steps of a wideband speech coding pipeline (compression, quantization, entropy coding, and decompression) end-to-end directly from raw speech data -- no manual feature engineering necessary, and it trains in hours. In testing, our DNN-based coder performs on par with the AMR-WB standard at a variety of bitrates (~9kbps up to ~24kbps). It also runs in realtime on a 3.8GhZ Intel CPU.
منابع مشابه
Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملDeep Voice: Real-time Neural Text-to-Speech
We present Deep Voice, a production-quality text-to-speech system constructed entirely from deep neural networks. Deep Voice lays the groundwork for truly end-to-end neural speech synthesis. The system comprises five major building blocks: a segmentation model for locating phoneme boundaries, a grapheme-tophoneme conversion model, a phoneme duration prediction model, a fundamental frequency pre...
متن کاملAnalyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems
Neural networks have become ubiquitous in automatic speech recognition systems. While neural networks are typically used as acoustic models in more complex systems, recent studies have explored end-to-end speech recognition systems based on neural networks, which can be trained to directly predict text from input acoustic features. Although such systems are conceptually elegant and simpler than...
متن کاملSpeech signals frequency modulation decoding via deep neural networks
End-to-end learning based approaches have been shown to be effective and are giving excellent performance for many systems with less training data. In this work we present an end to end learning approach for novel application of software defined radio (SDR) that utilizes the prior knowledge of transmitted speech message to detect and denoise the audio speech signal from the inphase and quadratu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.09064 شماره
صفحات -
تاریخ انتشار 2017